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Abstract

We investigate the dynamics defined by the following set of three coupled
first-order ODEs:

żn + iωzn = gn+2

zn − zn+1
+

gn+1

zn − zn+2
.

It is shown that the system can be reduced to quadratures which can be expressed
in terms of elementary functions. Despite the integrable character of the model,
the general solution is a multiple-valued function of time (considered as a
complex variable), and we investigate the position and nature of its branch
points. In the semi-symmetric case (g1 = g2 �= g3), for rational values
of the coupling constants the system is isochronous and explicit formulae
for the period of the solutions can be given. For irrational values, the
motions are confined but feature aperiodic motion with sensitive dependence
on initial conditions. The system shows a rich dynamical behaviour that
can be understood in quantitative detail since a global description of the
Riemann surface associated with the solutions can be achieved. The details
of the description of the Riemann surface are postponed to a forthcoming
publication. This toy model is meant to provide a paradigmatic first step
towards understanding a certain novel kind of chaotic behaviour.

PACS numbers: 05.45.−a, 02.30.Hq, 02.30.Ik

1. Introduction

The fact that the distinction among integrable or nonintegrable behaviours of a dynamical
system is somehow connected with the analytic structure of the solutions of the model under
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consideration as functions of the independent variable ‘time’ (considered as a complex variable)
is by no means a novel notion. It goes back to classical work by Carl Jacobi, Henri Poincaré,
Sophia Kowalevskaya, Paul Painlevé and others. In recent times some of us had the good
fortune to hear in several occasions such ideas clearly described by Kruskal [19, 20]. A
simple-minded rendition of his teachings can be described as follows: for an evolution to be
integrable, it should be expressible, at least in principle, via formulae that are not excessively
multivalued in terms of the dependent variable, entailing that, to the extent this evolution is
expressible by analytic functions of the dependent variable (considered as a complex variable),
it might possess branch points, but it should not feature an infinity of them that is dense in the
complex plane of the independent variable.

A number of techniques collectively known as Painlevé analysis have been resurrected
and further developed over the last few decades (for a review see, for instance, [23]). In
essence, they consider an ansatz of the local behaviour of a solution near a singularity in terms
of a Laurent series, introducing it in the equations and determining the leading orders and
resonances (terms in the expansion at which arbitrary constants appear). Painlevé analysis has
been extended to test for the presence of algebraic branching (weak Painlevé property [23]) by
considering a Puiseaux series instead of a Laurent series. These analytic techniques (which
have been algorithmized and are now available in computer packages) constitute a useful tool
in the investigation of integrability: in many nonlinear systems where no solution in the closed
form is known, Painlevé analysis provides information on the type of branching featured by
the general solution or by special classes of solutions. It has also proved useful to identify
special values of the parameters for which generally chaotic systems such as Hénon–Heiles
or Lorenz are integrable [4, 14].

On the opposite side of the spectrum lie chaotic dynamical systems and it is natural to
investigate the singularity structure of their solutions. Tabor and his collaborators initiated
this study in the early 1980s for the Lorenz system [24] and the Henon–Heiles Hamiltonian
[14]. They realized that the singularities of the solutions in complex time are important for
the real-time evolution of the system. The complex time analytic structure was studied by
extensions of the Painlevé analysis involving the introduction of logarithmic terms in the
expansion—the so-called �-series—which provides a local representation of the solutions in
the neighbourhood of a singularity in the chaotic regime. Their local analytic approach was
complemented by numerical techniques developed for finding the location of the singularities
in complex time and determining the order of branching [12]. In all the chaotic systems under
study, they observed numerically that the singularities in the complex time cluster on a natural
boundary with self-similar structure [13]. An analytic argument to explain the mechanism that
leads to recursive singularity clustering was given in [21]. Similar studies relating singularity
structure, chaos and integrability have been performed by Bountis and his collaborators. Going
beyond the local techniques described above, the emphasis is put on a global property of the
solutions: whether their Riemann surface has a finite or an infinite number of sheets. Bountis
proposes to use the term integrable for the first case and non-integrable for the second [2, 3].
Using mostly numerical evidence he conjectures that in the non-integrable cases the Riemann
surfaces are infinitely sheeted and the projection on the complex plane of the singularities is
dense. Combining analytical and numerical results for a simple ODE, Bountis and Fokas [16]
have identified chaotic systems with the property that the singularities of their solutions are
dense.

Painlevé analysis and its extensions are useful and widely applicable. However, as local
techniques, they provide no information on the global properties of the Riemann surfaces
of the solutions, such as the number and location of the movable branch points a solution
has, and moreover how the different sheets of the Riemann surface are connected together at
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those branch points. Understanding these global properties is important for the dynamics; a
detailed analysis of the Riemann surface associated with the solutions of a dynamical system,
whenever it can be done, provides a much deeper understanding than can be obtained by local
techniques alone.

This is precisely the motivation of the investigation reported herein: to introduce and
study a model which is simple enough that a full description of its Riemann surface can be
performed, yet complicated enough to feature a rich behaviour, possibly including irregular
or chaotic characteristics.

Such a model was initially presented in [1] and in this paper we continue investigating
its properties. This line of research originates from a ‘trick’ that is convenient to identify
isochronous systems [5, 7]—a change of dependent and independent variables, with the new
independent variable travelling on a path in the complex plane. Later it was shown that many
isochronous systems can be written by a suitable modification of a large class of complex
ODEs [7, 8]. Using local analysis and numerical integration in two many-body systems in the
plane [9, 11], it was discovered that outside the isochrony region there exist periodic solutions
with much higher periods as well as possibly aperiodic solutions, and the connection among
this phenomenology and the analytic structure of the corresponding solutions as functions of
complex time was illuminated. However, those systems were too complicated for a complete
description of the Riemann surface to be achieved.

Recent work along these lines includes problems whose solution is obtained by
inversion of a hyperelliptic integral: the corresponding Riemann surfaces have been
studied in [15, 17], together with the implications on the dynamical properties of the
models.

In the present paper we provide many details that were reported without proof in [1],
such as the description of the general solution by quadratures, and we also exhibit other
properties of the model that were not present in [1], such as similarity solutions, equilibrium
configurations and small oscillations. Our investigation of this model will continue in a
subsequent publication, [10], where the full description of the geometrical properties of the
Riemann surface will be given.

This paper is organized as follows: in section 2 we present our model, including in
particular the relationship among its physical version (independent variable: the real time t)
and its auxiliary version (independent variable: a complex variable τ ), and we outline the
main findings reported in this paper. In section 3 we discuss the equilibrium configurations of
our physical model, and the behaviour of this system in the neighbourhood of these solutions,
and we also obtain certain exact similarity solutions of our model and discuss their stability.
In section 4 we discuss the analytic structure of the solutions of the auxiliary model via
local analyses à la Painlevé, since the analytic structure of these solutions plays a crucial
role in determining the time evolution of our physical model. In section 5 we show how the
general solution of our model can be achieved by quadratures and in section 6 we outline
the behaviour of our model based on these results. Finally, in section 7 we summarize our
results and comment on future developments. This paper also contains a few appendices,
where certain calculations are confined (to avoid interrupting inconveniently the flow of the
presentation) as well as certain additional findings.

2. Presentation of the model

In this section we introduce the model treated in this paper, and we outline our main findings
that are then proven and further discussed in subsequent sections.
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2.1. The auxiliary model

The auxiliary model on which we focus in this paper is characterized by the following system
of three coupled nonlinear ODEs:

ζ ′
n = gn+2

ζn − ζn+1
+

gn+1

ζn − ζn+2
. (1)

Notation. Here and hereafter indices such as n,m range from 1 to 3 and are defined mod(3); τ

is the (complex) independent variable of this auxiliary model; the three functions ζn ≡ ζn(τ )

are the dependent variables of this auxiliary model, and we assume them to be as well
complex; an appended prime always denotes differentiation with respect to the argument of
the functions it is appended to (here, of course, with respect to the complex variable τ); and
the three quantities gn are arbitrary ‘coupling constants’ (possibly also complex; but in this
paper we restrict consideration mainly to the case with real coupling constants; this is in
particular hereafter assumed in this section). In the following we will often focus on the
‘semisymmetrical case’ characterized by the equality of two of the three coupling constants,
say

g1 = g2 = g, g3 = f, (2)

since in this case the treatment is simpler yet still adequate to exhibit most aspects of the
phenomenology we are interested in. More special cases are the ‘fully symmetrical’, or
‘integrable’, one characterized by the equality of all three coupling constants,

g = f, g1 = g2 = g3 = g, (3)

and the ‘two-body’ one, with only one nonvanishing coupling constant, say

g1 = g2 = g = 0, g3 = f �= 0. (4a)

In this latter case clearly

ζ ′
3 = 0, ζ3(τ ) = ζ3(0) (4b)

(see (1)) and the remaining two-body problem is trivially solvable,

ζs(τ ) = 1
2 [ζ1(0) + ζ2(0)] − (−)s

{
1
4 [ζ1(0) − ζ2(0)]2 + f τ

}1/2
, s = 1, 2, (4c)

while the justification for labelling the fully symmetrical case (3) as ‘integrable’ will be clear
from the following (or see section 2.3.4.1 of [6]). Before introducing our physical model, let us
note that the auxiliary system (1) is invariant under translations of both the independent variable
τ (indeed, it is autonomous) and the dependent variables ζn(τ ) (ζn(τ ) ⇒ ζn(τ ) + ζ0, ζ

′
0 = 0),

and it is moreover invariant under an appropriate simultaneous rescaling of the independent
and the dependent variables.

2.2. The trick and the physical model

The trick mentioned above, relating the auxiliary model to the physical model, amounts in our
present case to the introduction of the (real) independent variable t (‘physical time’), as well
as the three (complex) dependent variables zn ≡ zn(t), via the following positions:

τ = exp(2iωt) − 1

2iω
, (5a)

zn(t) = exp(−iωt)ζn(τ ). (5b)
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We hereafter assume the constant ω to be real (for definiteness, positive, ω > 0; note that for
ω = 0 the change of variables disappears), and we associate with it the period

T = π

ω
. (5c)

Note that this change of variables entails that the initial values zn(0) of the ‘particle coordinates’
zn(t) coincide with the initial values ζn(0) of the dependent variables of the auxiliary
model (1):

zn(0) = ζn(0). (6)

It is easily seen that, via this change of variables, (5), the equations of motion (1) satisfied
by the quantities ζn(τ ) entail the following (autonomous) equations of motion (in the real time
t) for the particle coordinates zn(t):

żn + iωzn = gn+2

zn − zn+1
+

gn+1

zn − zn+2
. (7)

Here and hereafter superimposed dots indicate differentiations with respect to the time t.

So, this model (7) describes the ‘physical evolution’ which we study. Note that its
equations of motion, (7), are of Aristotelian, rather than Newtonian, type: the ‘velocities’ żn,
rather than the ‘accelerations’ z̈n, of the moving particles are determined by the ‘forces’.

Let us immediately emphasize two important qualitative aspects of the dynamics of our
physical model (7). The ‘one-body force’ represented by the second term, iωzn, on the left-
hand side of the equations of motion (7) becomes dominant with respect to the ‘two-body
forces’ appearing on the right-hand side in determining the dynamics whenever the (complex)
coordinate zn of the nth particle becomes large (in modulus). Hence when |zn(t)| is very
large, the solution zn(t) of (7) is approximated by the solution of żn + iωzn ≈ 0 implying that
zn (t) is characterized by the behaviour zn(t) ≈ c exp(−iωt), therefore the trajectory of the nth
particle tends to rotate (clockwise, with period 2T ) on a (large) circle. This effect causes all
motions of our physical model, (7), to be confined. Second, it is clear that the two-body forces
(see the right-hand side of (7)) cause a singularity whenever there is a collision of two (or all
three) of the particles as they move in the complex z-plane, and become dominant whenever
two or three particles get very close to each other, namely in the case of near collisions. But
if the three particles move aperiodically in a confined region (near the origin) of the complex
z-plane, a lot of near collisions shall indeed occur. And since the outcome of a near collision is
likely to be quite different depending on which side two particles scatter past each other—and
this, especially in the case of very close near collisions, depends sensitively on the initial data
of the trajectory under consideration—we see here a mechanism complicating the motion,
indeed causing some kind of chaos associated with a sensitive dependence of the motion on
its initial data. This suggests that our model (7), in spite of its simplicity, is likely to be rich
enough to cause an interesting dynamical evolution. We will see that this is indeed the case.
But before proceeding with this investigation let us interject two remarks (somewhat related
to each other).

Remark 1. This system (7) is still invariant under translations of the independent variable
t (indeed, it is again autonomous) but, in contrast to (1), it is no longer invariant under
translations of the dependent variables zn(t) nor under a simple rescaling of the independent
variable t and of the dependent variables zn(t).

Remark 2. The general solution of the equations of motion (7) has the structure

zn(t) = zCM(t) + žn(t), (8a)
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where the three functions žn(t) satisfy themselves the same equations of motion (7) as well as
the additional restriction

ž1(t) + ž2(t) + ž3(t) = 0 (8b)

which is clearly compatible with these equations of motion, and correspondingly zCM(t) is the
centre of mass of the system (7),

zCM(t) = z1(t) + z2(t) + z3(t)

3
, (9a)

and it evolves according to the simple formula
zCM(t) = zCM(0) exp(−iωt) = Z exp(−iωt). (9b)

In section 3 (and appendix A) we determine the equilibrium configurations of our physical
model, namely the values z(eq)

n of the three particle coordinates zn such that

zn = z(eq)
n , żn = 0 (10)

satisfy the equations of motion (7), and we ascertain the behaviour of our system in the
neighbourhood of these configurations. In the second part of section 3, and then almost
always in the remainder of this paper (and throughout the rest of this section) we restrict for
simplicity consideration to the semisymmetrical case, see (2). A main finding in section 3 (and
appendix A) is that in the semisymmetrical case our model (7) possesses generally
two equilibrium configurations z(eq)

n . We moreover determine the three exponents γ (m)

characterizing the small oscillations of our system in the neighbourhood of each of these
two configurations, defined according to the standard formulae (see section 3)

zn(t) = z(eq)
n + εwn(t), (11a)

w(m)
n (t) = exp(−iγ (m)ωt)v(m)

n , (11b)

where of course ε is an infinitesimally small parameter and the quantities v(m)
n are time-

independent. We find that the first two of these three exponents take in both cases the simple
values

γ (1) = 1, γ (2) = 2, (12)

the first of these corresponding of course to the centre-of-mass motion, see (9b). As for the
third exponent γ (3), we find for one equilibrium configuration

γ (3) = f + 8g

f + 2g
= 1

μ
, (13a)

and for the other

γ (3) = f + 8g

3g
= 2

1 − μ
. (13b)

Here we have introduced the constant μ,

μ = f + 2g

f + 8g
(14)

whose value, as we shall see, plays an important role in determining the dynamical evolution
of our model: in particular, this evolution does largely depend on whether or not μ is a real
rational number, and if it is rational,

μ = p

q
(15)

6
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with p and q coprime integers (and q positive, q > 0 ), on whether the two natural numbers |p|
and q are large or small. A hint of this is already apparent from the results we just reported:
while the solutions w(1)

n (t) and w(2)
n (t), see (11), are both periodic with period 2T (see (5c);

in fact w(2)
n (t) is periodic with period T), the solution w(3)

n (t), see (11), is periodic with the
period T̃ ,

T̃ = 2T

γ (3)
, (16)

which is clearly congruent to T only if μ is rational, see (15) and (13)—implying then that the
small oscillations around the equilibrium configurations are always completely periodic with
a period which is a finite integer multiple of T.

In section 3 we also introduce the special class of (exact and completely explicit)
‘similarity’ solutions of our equations of motion, (7), and analyse their stability, namely
the solutions of our system in the immediate neighbourhood of these similarity solutions.

2.3. Conserved quantities

It is important to note at this point that the auxiliary model (1) possesses conserved quantities,
which will be used in section 5 to obtain its general solution by quadratures. First, due to the
translational invariance it is obvious that the quantity

Z = 1

3

3∑
n=1

ζn (17)

does not depend on τ . In addition, the analysis of section 5 shows that in the semisymmetrical
case there exists an extra conserved quantity given by

K̃ = (2ζ3 − ζ1 − ζ2)
−2

[
1 − (ζ1 − ζ2)

2 + (ζ2 − ζ3)
2 + (ζ3 − ζ1)

2

2μ(2ζ3 − ζ1 − ζ2)2

]μ−1

. (18)

Here the constant μ is defined in terms of the coupling constants g and f, see (2), by (14). We
already mentioned that the value of this parameter (in particular, whether or not μ is a rational
number) plays an important role in determining the dynamical evolution of our model. A hint
of this is now provided by the appearance of this number μ as an exponent on the right-hand
side of (18), since this exponent characterizes the multivaluedness of the dependence of the
constant K̃ on the coordinates ζn.

3. Equilibrium configurations, small oscillations and similarity solutions of the

physical model

In this section we discuss, first, the equilibrium configurations of our physical model, (7),
and its behaviour near equilibrium, and second, a special, explicit ‘similarity’ solution of our
model and its stability.

The equilibrium configurations of our physical model (7),

zn(t) = z(eq)
n , żn(t) = 0, (19)

(see (10)) are clearly characterized by the algebraic equations

iωz(eq)
n = gn+1

z
(eq)
n − z

(eq)

n+2

+
gn+2

z
(eq)
n − z

(eq)

n+1

. (20)

These algebraic equations entail

z
(eq)

1 + z
(eq)

2 + z
(eq)

3 = 0. (21)

7



J. Phys. A: Math. Theor. 42 (2009) 015205 F Calogero et al

It is now convenient to set

z(eq)
n = (2iω)−1/2 αn, (22)

so that the equilibrium equations (20) read as follows:
αn

2
= gn+1

αn − αn+2
+

gn+2

αn − αn+1
. (23)

These algebraic equations can be conveniently (see below) rewritten as follows:

αn = βn+1 (αn − αn+2) + βn+2 (αn − αn+1) , (24a)

via the position

βn = 2gn

(αn−1 − αn+1)
2 . (24b)

We now note that, in order that the three equations (24a) (which are linear in the three unknowns
αn, although only apparently so, see (24b)) have a nonvanishing solution, the quantities βn

must cause the following determinant to vanish:∣∣∣∣∣∣
β2 + β3 − 1 −β3 −β2

−β3 β3 + β1 − 1 −β1

−β2 −β1 β1 + β2 − 1

∣∣∣∣∣∣ = 0. (25)

To analyse the small oscillations of our system (7) around its equilibrium configurations
we now set

zn(t) = z(eq)
n + εwn(t) (26a)

(see (11a)) and we then get (linearizing by treating ε as an infinitesimally small parameter)

ẇn + iωwn + iωβn+1(wn − wn+2) + βn+2(wn − wn+1) = 0. (26b)

Therefore the three exponents γ (m) characterizing the small oscillations around equilibrium
via the formula

w(m)
n (t) = exp(−iγ (m)ωt)v(m)

n , (27)

providing three independent solutions of the system of linear ODEs (26b), are the three
eigenvalues of the symmetrical matrix

B =
⎛
⎝β2 + β3 + 1 −β3 −β2

−β3 β3 + β1 + 1 −β1

−β2 −β1 β1 + β2 + 1

⎞
⎠ , (28)

and the three 3-vectors �v(m) ≡ (
v

(m)
1 , v

(m)
2 , v

(m)
3

)
are the corresponding eigenvectors,

3∑
�=1

Bn�v
(m)
� = γ (m)v(m)

n . (29)

Hence the three exponents γ (m) are the three roots of the ‘secular equation’∣∣∣∣∣∣
β2 + β3 + 1 − γ −β3 −β2

−β3 β3 + β1 + 1 − γ −β1

−β2 −β1 β1 + β2 + 1 − γ

∣∣∣∣∣∣ = 0. (30)

Clearly these three roots are given by the following formulae:

γ (1) = 1, γ (2) = 2, γ (3) = 2(β1 + β2 + β3). (31)

8
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Indeed the determinant (30) vanishes for γ = γ (1) = 1 (when each line sums to zero) and for
γ = γ (2) = 2 (see (25)), and the third solution,

γ (3) = 2(β1 + β2 + β3), (32)

is then implied by the trace condition

trace[B] = 3 + 2(β1 + β2 + β3) = γ (1) + γ (2) + γ (3). (33)

The first of these three solutions, γ (1) = 1, corresponds to the centre-of-mass motion (it clearly
entails v(1)

n = v(1), see (27) and (28)).
In the semisymmetrical case (2) equations (23) (or equivalently (24)) characterizing, via

(22), the equilibrium configurations can be solved explicitly (see appendix A). One finds that
there are two distinct equilibrium configurations (in fact four, if one takes account of the trivial
possibility to exchange the roles of the two ‘equal’ particles with labels 1 and 2), the first of
which reads simply

z
(eq)

3 = 0, z
(eq)

1 = −z
(eq)

2 = z(eq), (z(eq))2 = f + 2g

2iω
, (34)

while the second has a slightly more complicated expression (see appendix A). Note however
that, in both cases, there holds the relation

(
z

(eq)

1 − z
(eq)

2

)2
+

(
z

(eq)

2 − z
(eq)

3

)2
+

(
z

(eq)

3 − z
(eq)

1

)2 = 3(f + 2g)

iω
. (35)

Moreover, in both cases the corresponding values for the eigenvalue γ (3), see (32), are easily
evaluated. The first solution yields (see (13a))

γ (3) = f + 8g

f + 2g
= 1

μ
= q

p
, (36a)

where, for future reference, we expressed γ (3) not only in terms of the parameter μ, see (14),
but as well in terms of its rational expression (15) (whenever applicable), while the second
solution likewise yields

γ (3) = f + 8g

3g
= 2

1 − μ
= 2q

q − p
. (36b)

Note that this implies that in the ‘integrable’ case (3) both these formulae, (36a) and (36b),
yield γ (3) = 3; but it is easily seen that in this case only the first equilibrium configuration
(34) actually exists. So in the ‘integrable’ case the oscillations around the (only) equilibrium
configuration (34) are the linear superposition of three periodic motions (see (27)) with
respective periods 2T , T and 2T

3 (see (5c)). Also in the ‘two-body’ case (4) the second
equilibrium configuration does not exist, while the first formula, (36a), yields γ (3) = 1, so in
this case the small oscillations around the (only) equilibrium configuration (34) are the linear
superposition of two periodic motions, with periods 2T and T (see (5c); consistently with the
explicit solution, easily obtainable from (4c) via (5)).

As can be easily verified, the equilibrium configurations (19) with (20) are merely the
special case corresponding to zCM(0) = 0, c = 0 of the following two-parameter family of
(exact) ‘similarity’ solutions of our equations of motion (7):

zn(t) = zCM(t) + z̃n(t; c), (37a)

z̃n(t; c) ≡ z(eq)
n

[
1 + c exp(−2iωt)

]1/2
, (37b)

with the centre-of-mass coordinate zCM(t) evolving according to (9b). The two arbitrary
(complex) constants featured by this solution are of course zCM(0) = Z (see (9b)) and c, while
the constants z(eq)

n ’s are defined as in the preceding section, see (20).

9
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Clearly these (exact) solutions correspond, via the trick (5), relation (22) (which is clearly
consistent with (23) and (20)) and the simple relation

τb = c − 1

2iω
, (38)

to the two-parameter family

ζn(τ ) = Z + αn(τ − τb)
1/2, (39)

of (exact) solutions of (1).
Let us now discuss the stability of this solution (37b). To this end we set

zn(t) = z̃n(t; c) + εw̃n(t), (40a)

and we insert this ansatz in our equations of motion (7), linearizing them by treating ε as an
infinitesimally small parameter. We thus get

·
w̃n + iωw̃n +

iω[βn+1(w̃n − w̃n+2) + βn+2(w̃n − w̃n+1)]

1 + c exp(−2iωt)
= 0, (40b)

having used the definition (24b). Clearly the solution of this system of ODEs reads

w̃n(t) = exp(−iωt)χn(ϑ), (41a)

with

ϑ ≡ ϑ(t) = t − (2iω)−1 log

[
1 + c exp(−2iωt)

1 + c

]
(41b)

and the functions χn(ϑ) solutions of the autonomous linear system of first-order ODEs

χ ′
n + iω[βn+1(χn − χn+2) + βn+2(χn − χn+1)] = 0, (41c)

where the primes denote of course differentiation with respect to ϑ. Hence (see (26b)) the
three independent solutions of this linear system are

χ(m)
n (ϑ) = exp(iωϑ)w(m)

n (ϑ), (41d)

with the functions w(m)
n defined by (27) (of course with t replaced by ϑ), yielding via (27) and

(41a) with (41b) the following two equivalent expressions for the three independent solutions
of the linear system (40b):

w̃(m)
n (t) =

[
1 + c exp(−2iωt)

1 + c

](γ (m)−1)/2

exp(iγ (m)ωt)ṽ(m)
n , (42a)

w̃(m)
n (t) =

[
exp(2iωt) + c

1 + c

](γ (m)−1)/2

exp(iωt)ṽ(m)
n . (42b)

Here the three exponents γ (m) are defined as above, see (31), and likewise the ‘eigenvectors’
ṽ(m)

n coincide with those defined above up to (arbitrary) normalization constants c(m),

ṽ(m)
n = c(m)v(m)

n . (42c)

Note the equivalence of the two expressions (42a) and (42b) (the motivation for writing these
two versions of the same formula will be immediately clear).

For m = 1, 2, 3 these solutions, see (42b), are periodic functions of the (real) time t with
period 2T if |c| > 1. If instead |c| < 1, the solutions (see (42a)) with m = 1 respectively
m = 2 are periodic with periods 2T respectively T (see (31)). The solution with m = 3
is periodic if γ (3) is real, but with the period 2T

|γ (3)| which is not congruent to T if γ (3) is

irrational; it grows exponentially with increasing time if Im[γ (3)] < 0, implying instability

10
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of the solution (37) in this case, and it instead decays exponentially if Im[γ (3)] > 0, implying
a limit cycle behaviour in configuration space, namely asymptotic approach to a solution
completely periodic with period T or 2T depending whether the centre of mass of the system
is fixed at the origin or itself moving with period 2T ; but note that in this paper we restrict our
attention to the case with real coupling constants.

4. Analytic structure of the solutions of the auxiliary model

In this section we discuss the properties of analyticity as functions of the complex variable τ

of the solutions ζn(τ ) of the auxiliary model (1) (with arbitrary values of the three coupling
constants gn, i.e. not restricted by the semisymmetrical condition (2): except when this is
explicitly specified, see below). In particular we show first of all that, for appropriate initial
data characterized by sufficiently large values of the moduli of all three interparticle distances,
namely by the condition (see (6)) that the quantity

ζmin = min
n,m=1,2,3;n�=m

|ζn(0) − ζm(0)| (43)

be adequately large, the solutions ζn(τ ) are holomorphic in a disk D0 of (arbitrarily large)
radius d0 centred at the origin, τ = 0, of the complex τ -plane (of course the ‘adequately large’
value of the quantity ζmin depends on d0, and on the magnitude of the three coupling constants
gn ; see (51) below). We moreover discuss via a local analysis a la Painlevé the nature of
the singularities of the solutions ζn(τ ) of the auxiliary model (1) as functions of the complex
variable τ and we thereby justify the assertions made in this respect in section 2.

To prove the first point, set

σn(τ ) = ζn(τ ) − ζn(0), (44a)

so that these quantities σn(τ ) vanish initially,

σn(0) = 0, (44b)

and, as a consequence of (1), satisfy the equations of motion

σ ′
n(τ ) = gn+1

ζn(0) − ζn+2(0) + σn(τ ) − σn+2(τ )
+

gn+2

ζn(0) − ζn+1(0) + σn(τ ) − σn+1(τ )
. (44c)

A standard theorem (see, for instance, [18]) guarantees then that these quantities σn(τ )—hence
as well the functions ζn(τ ), see (44a)—are holomorphic in τ (at least) in a disk D0 centred
at the origin τ = 0 in the complex τ -plane, the radius d0 of which is bounded below by the
inequality

d0 >
b

4M
(45)

(this formula coincides with the last equation of section 13.21 of [18], with the assignments
m = 3 and a = ∞, the first of which is justified by the fact that the system (44c) features
three coupled equations, the second of which is justified by the autonomous character of the
equations of motion (44c)). The two positive quantities b and M on the right-hand side of this
inequality are defined as follows. The quantity b is required to guarantee that the right-hand
sides of the equations of motion (44c) be holomorphic (as functions of the dependent variables
σn) provided these quantities satisfy the three inequalities

|σn| � b, (46)

clearly in our case a sufficient condition to guarantee this is provided by the single
restriction

b <
ζmin

2
, (47)

11
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with ζmin defined by (43). The second quantity on the right-hand side of (45), M ≡ M(b), is
the upper bound of the right-hand sides of (44c) when the quantities σn satisfy the inequality
(46); but of course the inequality (45) holds a fortiori if we overestimate M, as we shall
presently do. Indeed clearly the equations of motion (44c) with (46) and (47) entail

M <
4G

ζmin − 2b
, (48)

with

G = max
n=1,2,3

|gn|. (49)

Insertion of (48) into (45) yields

d0 >
b(ζmin − 2b)

16G
, (50)

hence, setting b = ζmin

4 (to maximize the right-hand side; note the consistency of this assignment
with (47)),

d0 >
ζ 2

min

128G
, (51)

confirming the assertion made above (that d0 can be made arbitrarily large by choosing ζmin

adequately large).
Next, let us show, via a local analysis à la Painlevé, that the singularities as functions of

the complex variable τ of the general solutions ζn(τ ) of our auxiliary model (1) associated
with a coincidence of two of the three components ζn are square-root branch points (recall
that a singularity at finite τ of a solution ζn(τ ) of the evolution equations (1) may only occur
when the right-hand side of these equations diverges). Such a singularity occurs for those
values τb of the independent variable τ such that two of the three functions ζn coincide, for
instance

ζ1(τb) = ζ2(τb) �= ζ3(τb). (52)

The square-root character of these branch points is evident from the following ansatz
characterizing the behaviour of the solutions of (1) in the neighbourhood of these
singularities:

ζs(τ ) = ζb − (−1)sα(τ − τb)
1/2 + vs(τ − τb) +

∞∑
k=3

α(k)
s (τ − τb)

k/2, s = 1, 2

ζ3(τ ) = ζ3b + v3(τ − τb) +
∞∑

k=3

α
(k)
3 (τ − τb)

k/2,

(53a)

with

α2 = g3, v3 = − g1 + g2

ζb − ζ3b

, vs = gs + 5gs+1

6(ζb − ζ3b)
, s = 1, 2 mod(2), (53b)

and the constants α(k)
n determinable (in principle) recursively (for k = 3, 4, . . .) by inserting

this ansatz in (1), so that, to begin with

α
(3)
3 = 2α(g2 − g1)

3(ζb − ζ3)2
, (53c)

α(3)
s = −(−1)s

α

36(ζb − ζ3)2

[
3(gs − 7gs+1) +

(g1 − g2)
2

g3

]
,

s = 1, 2 mod(2),

(53d)

12
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and so on. The diligent reader will verify the consistency of this procedure, for any assignment
of the three constants τb, ζb and ζ3b, which remain undetermined except for the obvious
restrictions τb �= 0, ζb �= 0, ζ3b �= ζb. The fact that (53) contains three arbitrary (complex)
constants—the maximal number of integration constants compatible with the system of three
first-order ODEs (1)—shows that this ansatz is indeed adequate to represent locally, in the
neighbourhood of its singularities occurring at τ = τb, the general solution of (1).

An analogous analysis of the behaviour of the solutions of the system (1) near the values
of the independent variable τ where a triple coincidence of all three functions ζn occurs
(corresponding to the excluded assignment ζ3b = ζb in the above ansatz (53)), indicates,
somewhat surprisingly, that such a triple coincidence,

ζ1(τb) = ζ2(τb) = ζ3(τb) = Z (54)

might also occur for the general solution of the system (1). This conclusion is reached
via a local analysis analogous to that performed above, and is then confirmed (for the
semisymmetrical case, see (2)) by the exact treatment of section 5. Indeed the natural
extension of the above ansatz (53) characterizing the behaviour of the solutions of (1) in the
neighbourhood of such singularities, corresponding to a triple coincidence, see (54), of the
three functions ζn(τ ), reads as follows:

ζn(τ ) = Z + ηn(τ − τb)
(1−γ )/2 + αn(τ − τb)

1/2 + o(|τ − τb|1/2), (55a)

provided

Re(γ ) < 0. (55b)

Here the three constants αn are determined, as can be easily verified, just by the three nonlinear
algebraic equations (23) that were found in the preceding section while investigating the
equilibrium configurations of our physical system (7), while the three constants ηn, as well as
the exponent γ, are required to satisfy the algebraic equations

(γ − 1)ηn

2
= gn+1(ηn − ηn+2)

(αn − αn+2)2
+

gn+2(ηn − ηn+1)

(αn − αn+1)2
. (56)

These algebraic equations, (23) and (56), can be conveniently rewritten as follows:

αn = βn+1(αn − αn+2) + βn+2(αn − αn+1), (57a)

(γ − 1)ηn = βn+1(ηn − ηn+2) + βn+2(ηn − ηn+1), (57b)

via the introduction of the quantities βn, see (24b). Note that in this manner these two sets
of equations, (57a) and (57b), have a quite similar look, which should however not mislead
the reader to underestimate their basic difference: the three equations (57a) are merely a
convenient way to rewrite, via the definition (24b), the three nonlinear equations (23), which
determine (albeit not uniquely, see appendix A) the three constants αn; while equations (57b)
are three linear equations for the three quantities ηn, hence they can determine these three
unknowns only up to a common multiplicative constant (provided they admit a nontrivial
solution: see below).

Of course these linear equations (57b) admit the trivial solution ηn = 0, and it is easily seen
that there indeed is a special (exact) solution of the equations of motion (1) having this property,
see (39) with the constants αn determined by (23) and computed, for the semisymmetrical
model, in appendix A. This ‘similarity solution’ (39) of the system (1) has been discussed in
the preceding section, but let us emphasize here that it only provides a two-parameter (Z and
τb) class of solutions of the equations of motion (1), while the general solution of this system
of three first-order ODEs must of course feature three arbitrary parameters.

13
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A general solution of the evolution equations (1) corresponds instead to the ansatz (55a) if
the linear equations (57b) for the three coefficients ηn admit a nonvanishing solution, because
in such a case, as mentioned above, a common scaling parameter for these three coefficients
remains as an additional (third) free parameter (besides Z and τb). The condition for this to
happen is the vanishing of the determinant of the coefficients of these three linear equations,
(57b), namely again validity of the determinantal condition (30), a cubic equation for the
unknown γ, which determines, as discussed in the preceding section, the three values (31) of
this quantity. But the first two of these values, γ = γ (1) = 1 and γ = γ (2) = 2 (see (31)),
are not consistent with the requirement (55b). The third solution, γ = γ (3) = 2(β1 + β2 + β3)

(see (31)) might instead be consistent with the requirement (55b), and whenever this happens
the ansatz (55) indicates that the general solution of the system of ODEs (1) does feature a
‘triple coincidence’, see (54), and identifies the character of the corresponding branch point.

In the semisymmetrical case (2) the equations characterizing the equilibrium
configuration, (23) or equivalently (57), can be solved (see appendix A). One finds that
there are two distinct solutions of these nonlinear equations (23) (in fact four, since each
solution has a trivial counterpart obtained by exchanging the role of the two ‘equal’ particles
with labels 1 and 2). The first solution yields for γ = γ (3) the value (36a), which is consistent
with the condition (55b) iff

Re(μ) < 0, (58)

and it yields for the branch point exponent, see (55b), the value

1 − γ

2
= μ − 1

2μ
= p − q

2p
, (59)

while the second solution yields for γ (3) the value (36b), which is consistent with the condition
(55b) iff

Re(μ) > 1, (60)

and it yields for the branch point exponent, see (55a), the value

1 − γ

2
= μ + 1

2(μ − 1)
= p + q

2(p − q)
. (61)

The last equality in (59) and (61) are of course only valid if μ is rational, μ = p/q.
Note that these findings imply that the branch point associated with ‘triple coincidences’

is not (only) of square-root type, being also characterized, see (55a), by the exponent 1−γ

2 ,

the value of which depends on the value of the parameter μ, see (59) and (61); however this
kind of branch point is not present if

0 < Re (μ) < 1, (62)

since in this case neither (58) nor (60) is satisfied.
The results presented in this section are not entirely rigorous, since the local analysis of the

singularities we performed above on the basis of appropriate ansätze should be complemented
by proofs that the relevant expansions converge. Moreover these analyses provide information
on the nature of the branch points, but neither on their number nor at their location. But
these results are confirmed and complemented below (see section 5) by the analysis of the
exact general solution of the equations of motion (1). Our motivation for having nevertheless
presented here a discussion of the character of the singularities of the solutions of (1) via a
local analysis à la Painlevé is because an analogous treatment may be applicable to models
which are not as explicitly solvable as that treated in this paper (see for instance [11] and [9]).
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5. General solution by quadratures

In this section we obtain and discuss the general solutions of our models, (1) and (7). But
since the general solution of the physical model (7) is easily obtained via the trick (5) from
the general solution of the auxiliary problem (1), we focus to begin with on this model.

A first constant of the motion is provided by the centre-of-mass coordinate

Z = ζ1 + ζ2 + ζ3

3
, (63a)

since the equations of motion (1) clearly entail

Z′ = 0 (63b)

hence

Z(τ) = Z(0). (63c)

And clearly the general solution of (1) reads

ζn(τ ) = Z + ζ̌n(τ ), (64a)

with the set of three functions ζ̌n (τ ) providing themselves a solution of (1), independent of
the value of Z and satisfying the (compatible) constraint

ζ̌1(τ ) + ζ̌2(τ ) + ζ̌3(τ ) = 0. (64b)

It is moreover clear that the equations of motion (1) entail

ζ ′
1ζ1 + ζ ′

2ζ2 + ζ ′
3ζ3 = g1 + g2 + g3, (65a)

hence there also holds the relation

ζ 2
1 + ζ 2

2 + ζ 2
3 = 2 (g1 + g2 + g3) (τ − τ0) . (65b)

It is now convenient to set, as in appendix B of [11],

ζs = Z −
(

2

3

)1/2

ρ cos

[
θ − (−1)s

2π

3

]
, s = 1, 2, (66a)

ζ3 = Z −
(

2

3

)1/2

ρ cos θ. (66b)

Then, summing the squares of these three formulae and using the identities

cos(θ) + cos

(
θ +

2π

3

)
+ cos

(
θ − 2π

3

)
= 0, (67)

cos2(θ) + cos2

(
θ +

2π

3

)
+ cos2

(
θ − 2π

3

)
= 3

2
, (68)

one easily gets

ζ 2
1 + ζ 2

2 + ζ 2
3 = 3Z2 + ρ2 (69a)

or equivalently

ρ2 = 1
3 [(ζ1 − ζ2)

2 + (ζ2 − ζ3)
2 + (ζ3 − ζ1)

2], (69b)

hence, from (65b),

ρ2 = 2(g1 + g2 + g3)(τ − τ0) − 3Z2 = 2(g1 + g2 + g3)(τ − τ1), (69c)
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τ1 = τ0 +
3Z2

2(g1 + g2 + g3)
, (69d)

which also entails

ρ ′ρ = g1 + g2 + g3. (69e)

Here we assume that the sum of the three coupling constants gn does not vanish, g1+g2+g3 �= 0.

The special case in which this sum does instead vanish is treated in appendix B. The expression
of the constant τ1 in terms of the initial data is of course (see (69c))

τ1 = − ρ2(0)

2(g1 + g2 + g3)
, (70a)

namely (see (69c))

τ1 = −ζ 2
1 (0) + ζ 2

2 (0) + ζ 2
3 (0) − 3Z2

2(g1 + g2 + g3)
, (70b)

or equivalently (see (69d))

τ1 = − (ζ1 − ζ2)
2 + (ζ2 − ζ3)

2 + (ζ3 − ζ1)
2

6(g1 + g2 + g3)
. (70c)

There remains to compute θ(τ ), or rather

u (τ) = cos θ (τ ) . (71)

Inserting the ansatz (66) in the equations of motion (1) with n = 3, one easily gets

ρ2(cos θ)′(4 cos2 θ − 1) = (4g1 + 4g2 + g3) cos θ − 4(g1 + g2 + g3) cos3 θ

+
√

3(g1 − g2) sin θ. (72)

From now on in this section—for simplicity, and because it is sufficient for our purposes—
we restrict attention to the semisymmetrical case (2), so that the last equation becomes simply,
via (71),

ρ2u′(4u2 − 1) = (f + 8g)u − 4(f + 2g)u3. (73)

The general case without the restriction (2) is treated in appendix B.
This ODE can be easily integrated via a quadrature (using (69c)), and this leads to the

following formula:

[u(τ)]−2μ

[
u2(τ ) − 1

4μ

]μ−1

= K(τ − τ1), (74)

where the parameter μ is defined by (14) and K is an integration constant. Here we are of
course assuming that f + 8g �= 0 (see (14)); the case when this does not happen is treated
in appendix B. (Also recall that, as promised above, we shall treat in appendix C the case in
which the sum of the three coupling constants gn vanishes, namely when f + 2g = 0, which
entails μ = 0, see (14)). As for the quantity K in (74), it is an (a priori arbitrary) integration
constant. It is a matter of elementary algebra to express this constant in terms of the original
dependent variables ζn (via (74), (69c), (71) and (66)), and one thereby obtains the relation

K = 12(f + 2g)K̃ (75)

with K̃ defined by (18). This finding justifies the assertion that K̃ is a constant of motion,
see section 2.3; and of course it determines the value to be assigned to the constant K in the
context of the initial-value problem. Likewise the value to be assigned, in the context of the
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initial-value problem, to the constant τ1 appearing on the right-hand side of (74) is given by
the formula

Kτ1 = −[u(0)]−2μ

[
u2(0) − 1

4μ

]μ−1

, (76)

where (see (71) and (66b))

u(0) = −
(

3

2

)1/2
ζ3(0) − Z

ρ(0)
, (77a)

namely

u(0) = − 2ζ3(0) − ζ1(0) − ζ2(0)

[2{[ζ1(0) − ζ2(0)]2 + [ζ2(0) − ζ3(0)]2 + [ζ3(0) − ζ1(0)]2}]1/2
. (77b)

Of course in these formulae the initial values ζn(0) of the coordinates ζn(τ ) of the auxiliary
problem (1) can be replaced by the initial values zn(0) of the physical problem (7), see (6).

Let us emphasize that we have now reduced, via (66) with (69c) and (71), the solution of
our problem (1) to the investigation of the function u(τ) of the complex variable τ, defined
for τ �= 0 as the solution of the (nondifferential) equation (74) that evolves by continuity from
u(0) at τ = 0.

To proceed with our analysis an additional change of variables is now convenient. We
introduce the new (complex) independent variable ξ by setting

ξ = K(τ − τ1)

4μ
, (78)

and the new (complex) dependent variable w ≡ w (ξ) by setting

w(ξ) = 4μ[u(τ)]2. (79)

Thereby the expression of the solution (66) of our original problem (1) reads

ζs(τ ) = Z −
(

f + 2g

3K

)1/2

ξ 1/2{−[w(ξ)]1/2 + (−)s[12μ − 3w(ξ)]1/2},

s = 1, 2,

(80a)

ζ3(τ ) = Z − 2

(
f + 2g

3K

)1/2

[ξw(ξ)]1/2, (80b)

while the (nondifferential) equation that determines the dependence of w (ξ) on the (complex)
variable ξ reads

[w (ξ) − 1]μ−1 [w (ξ)]−μ = ξ. (81)

Note that this equation is independent of the initial data; it only features the constant μ, which
only depends on the coupling constants, see (14).

We conclude that the solution of our physical problem (7) as the real time variable t
evolves onwards from t = 0 is essentially given, via (80) and (5), by the evolution of the
solution w(ξ) of this (nondifferential) equation, (81), as the complex variable ξ travels round
and round on the circle � in the complex ξ -plane defined by the equation (see (78) and (5a))

ξ = R exp(2iωt) + ξ̄ = R[exp(2iωt) + η], (82a)

namely on the circle with centre ξ̄ and radius |R|. The parameters R and ξ̄ (or η) depend on
the initial data according to the formulae (implied by (78), (5), (75), (18), (70c))
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R = 3(f + 8g)

2iω[2z3(0) − z1(0) − z2(0)]2
[1 − κ]μ−1, (82b)

ξ̄ = Rη, (82c)

η = iω{[ζ1(0) − ζ2(0)]2 + [ζ2(0) − ζ3(0)]2 + [ζ3(0) − ζ1(0)]2}
3(f + 2g)

− 1, (82d)

κ = 2μ[2ζ3(0) − ζ1(0) − ζ2(0)]2

[ζ1(0) − ζ2(0)]2 + [ζ2(0) − ζ3(0)]2 + [ζ3(0) − ζ1(0)]2
. (82e)

Of course in these formulae the initial values ζn(0) of the coordinates ζn(τ ) of the auxiliary
problem (1) can be replaced by the initial values zn(0) of the coordinates zn(t) of the physical
problem (7), see (6).

Let us emphasize that, as the complex variable ξ travels on the circle �—taking the time T
to make each round, see (82a) and (5c)—the dependent variable w (ξ) travels on the Riemann
surface determined by its dependence on the complex variable ξ, as entailed by equation (81)
that relates w (ξ) to its argument ξ—starting at t = 0 from ξ = ξ0,

ξ0 = ξ̄ + R = (η + 1)R, (83a)

ξ0 = iωR{[ζ1(0) − ζ2(0)]2 + [ζ2(0) − ζ3(0)]2 + [ζ3(0) − ζ1(0)]2}
3(f + 2g)

(83b)

(see (82)) and correspondingly from w(ξ0) = w0,

w0 = 1

κ
= [ζ1(0) − ζ2(0)]2 + [ζ2(0) − ζ3(0)]2 + [ζ3(0) − ζ1(0)]2

2μ[2ζ3(0) − ζ1(0) − ζ2(0)]2
(84)

(see (82e)).
Let us therefore now discuss the structure of this Riemann surface, namely the analytic

properties of the function w(ξ) defined by (81). There are two types of singularities, the ‘fixed’
ones occurring at values of the independent variable ξ, and correspondingly of the dependent
variable w, that can be read directly from the structure of equation (81) under investigation,
and the ‘movable’ ones (this name being given to underline their difference from the fixed
ones) occurring at values of the independent and dependent variables, ξ and w, that cannot be
directly read from the structure of equation (81) under investigation (they ‘move’ as the initial
data are modified).

5.1. Movable singularities

To investigate their nature it is convenient to differentiate (81), obtaining thereby (using
again (81))

ξw′ = −w(w − 1)

w − μ
, (85)

where the prime indicates of course differentiation with respect to ξ. (Note that this ODE is
implied by the nondifferential equation (81), while its solution reproduces the nondifferential
equation (81) up to multiplication of its right-hand side by an arbitrary constant.) The position
of the singularities, ξb, and the corresponding values of the dependent variable, wb ≡ w(ξb),

are then characterized by the vanishing of the denominator on the right-hand side of this
formula, yielding the relation

wb = μ, (86)
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which, combined with (81) (at ξ = ξb) is easily seen to yield

ξb = ξ
(k)
b = r exp(2π iμk), k = 1, 2, 3, . . . , (87a)

ξb = ξ
(k)
b = r exp

[
i
2πpk

q

]
, k = 1, 2, . . . , q, (87b)

r = (μ − 1)−1

(
μ − 1

μ

)μ

. (87c)

In the last, (87c), of these formulae it is understood that the principal determination is to be
taken of the μth power appearing on the right-hand side. The first of these formulae, (87a),
shows clearly that the number of these branch points is infinite if the parameter μ is irrational,
and that they then sit densely on the circle B in the complex ξ -plane centred at the origin and
having radius r, see (87c). Note that this entails that the generic point on the circle B is not
a branch point (just as a generic real number is not rational), but every generic point on the
circle B has some branch point (in fact, an infinity of branch points!) arbitrarily close to it
(just as every generic real number has an infinity of rational numbers arbitrarily close to it).
As for the second of this formulae, (87b), it is instead appropriate to the case in which the
parameter μ is rational, see (15), in which case the branch points sit again on the circle B in
the complex ξ -plane, but there are only a finite number, q, of them.

These singularities are all square-root branch points, as implied by the following standard
proof. Set, for ξ ≈ ξb,

w(ξ) = μ + a(ξ − ξb)
β + o(|ξ − ξb|Re(β)), (88a)

with the assumption (immediately verified, see below) that

0 < Re(β) < 1. (88b)

It is then immediately seen that the insertion of this ansatz in (85) (is consistent and) yields

β = 1

2
, a2 = 2(1 − μ)

ξb

= −2

(
μ

μ − 1

)μ

. (88c)

Note that these results confirm the treatment of section 4: the square-root branch points of
w(ξ) identified here, see (86), are easily seen to correspond, via (80), to the pair coincidence
ζ1(τb) = ζ3(τb) or ζ2(τb) = ζ3(τb), while there is an additional class of square-root branch
points which only affect ζ1(τ ) and ζ2(τ ), but neither ζ3(τ ) nor w(ξ), and occur at

w = 4μ (89a)

due to the vanishing of the second square-root term inside the curly bracket on the right-hand
side of (80a), and correspond therefore to the coincidence ζ1(τb) = ζ2(τb). The corresponding
values of ξ (as implied by (89a) with (81)) are

ξ = (4μ − 1)μ−1

(4μ)μ
= 1

4μ

(
1 − 1

4μ

)μ−1

(89b)

(we use the plural to refer to these values because of the multivaluedness of the function on
the right-hand side of this formula).

5.2. Fixed singularities

Next, let us consider the ‘fixed’ singularities, which clearly can only occur at ξ = ∞ and at
ξ = 0, with corresponding values of w.

Let us investigate first the nature of the singularities at ξ = ∞. Two behaviours of w(ξ)

are then possible for ξ ≈ ∞, depending on the value of (the real part of) μ. The first is
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characterized by the ansatz

w(ξ) = aξβ + o(|ξ |Re(β)), Re(β) < 0, (90a)

and its insertion in (81) yields

β = − 1

μ
, aμ = − exp(iπμ), (90b)

which is consistent with (90a) iff

Re(μ) > 0. (90c)

The second is characterized by the ansatz

w(ξ) = 1 + aξβ + o(|ξ |Re(β)), Re(β) < 0, (91a)

and its insertion in (81) yields

β = 1

μ − 1
, aμ−1 = 1, (91b)

which is consistent with (91a) iff

Re(μ) < 1. (91c)

We therefore conclude that there are three possibilities: if Re(μ) > 1, only the first ansatz,
(90), is applicable, and it characterizes the nature of the branch point of w(ξ) at ξ = ∞; if
Re(μ) < 0, only the second ansatz, (91), is applicable, and it characterizes the nature of the
branch point of w(ξ) at ξ = ∞; while if 0 < Re(μ) < 1, both ansätze, (90) and (91), are
applicable, so both types of branch points occur at ξ = ∞.

Next, let us investigate the nature of the singularity at ξ = 0. It is then easily seen, by an
analogous treatment, that two behaviours are possible, as displayed by the following ansätze:
either

w(ξ) = aξβ + o(|ξ |Re(β)), Re(β) > 0, (92a)

β = − 1

μ
, aμ = −exp(iπμ), (92b)

which is applicable iff

Re(μ) < 0; (92c)

or

w(ξ) = 1 + aξβ + o(|ξ |Re(β)), Re(β) > 0, (93a)

β = 1

μ − 1
, aμ−1 = 1, (93b)

which is applicable iff

Re(μ) > 0. (93c)

This analysis shows that the function w(ξ) features a branch point at ξ = 0 the nature of
which is characterized by the relevant exponent β, see (92b) or (93b), whichever is applicable
(see (92c) and (93c)). But let us emphasize that there is no branch point at all at ξ = 0 if
neither one of the two inequalities (92c) and (93c) holds, namely if 0 < Re(μ) < 1.
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5.3. Explicitly solvable cases

Let us end section 5 by noting that equation (81) for certain rational values of μ reduces
to such a low degree polynomial equation that it can be solved explicitly. In particular,
the polynomial equation is of second degree if μ = −1, 1/2 or 2; it is of third degree
if μ = −2,−1/2, 1/3, 2/3, 3/2, or 3; while it is of fourth degree if μ = −3,−1/3,

1/4, 1/2, 3/4, 4/3 or 4.
The diligent reader might wish to use the corresponding explicit solutions formulae for

these cases to verify the validity of the previous discussion.

6. The physical model

The solution (80) can also be written, via (75), (18) and (5), directly for the particle coordinates
zn(t), to read as follows:

zs(t) = Z eiωt − 2z3(0) − z1(0) − z2(0)

6
√

μ
[η exp(−2iωt) + 1]1/2 ·

× (−[w̌(t)]1/2 + (−)s[12μ − 3w̌(t)]1/2), s = 1, 2, (94a)

z3(t) = Z eiωt − 2z3(0) − z1(0) − z2(0)

3
√

μ
[η exp(−2iωt) + 1]1/2[w̌(t)]1/2, (94b)

where the constant η is given in terms of the initial data by (82d) and we set

w̌(t) ≡ w[ξ(t)], (95)

so that this dependent variable is now the solution of the nondifferential equation (see (81))

[w̌(t) − 1]μ−1[w̌(t)]−μ = R exp(2iωt) + ξ̄ = R[exp(2iωt) + η], (96)

where the constants R, ξ̄ and η are defined in terms of the initial data, see (82) (and recall
that the initial data ζn(0) can be replaced by the initial data zn(0), see (6)). The dependent
variable w̌(t) is of course the solution of this equation, (96), identified by continuity, as the
time t unfolds from t = 0, from the initial datum w̌(0) = w0 assigned at t = 0, see (84): this
specification is necessary, since generally the nondifferential equation (81) has more than a
single solution, in fact possibly even an infinity of solutions.

A discussion of the behaviour of this solution of the initial-value problem of our model
(7) with (2) clearly hinges on ascertaining how the solution w̌(t) of (96) evolves in time.
Equation (96) corresponds of course to the combination of (81) and (82). Hence one must
firstly elucidate the structure of the Riemann surface defined by the dependence of w(ξ) on the
complex variables ξ as determined by the nondifferential equations (81), and then understand
the consequences of a travel on this Riemann surface when the complex variable ξ evolves
according to (82), namely it travels round and round on the circle of centre ξ̄ and radius |R| in
the complex ξ -plane.

The first task is simple, its foundation being provided by the analysis provided in
sections 5.1 and 5.2.

The second task is much more demanding, inasmuch as it hinges on the detailed manner
the sheets of the Riemann surface are connected via the cuts associated with the branch points
discussed in sections 5.1 and 5.2. The main results of this analysis have already been reported
(without proofs) in [1]; their derivation requires a sufficiently extended treatment to suggest a
separate presentation [10]. To avoid unnecessary repetitions, also the detailed analysis of the
Riemann surface associated with (81) is postponed to [10].
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7. Outlook

In this paper we report a deeper analysis of the model introduced in [1] explaining many
results that were reported there without proof (such as the derivation of the general solution by
quadratures) while adding some new material (such as a detailed analysis of the equilibrium
configurations, small oscillations and similarity solutions of the model). The novelty of this
approach in accounting for a new phenomenology associated with chaotic motion in dynamical
systems lies in the fact that the solution is a multivalued function of (complex) time, and a
detailed analysis of its Riemann surface leads to very specific predictions in the simpler (μ
rational) cases, while it also unveils a source of irregular behaviour in the more complicated
(μ irrational) cases—unpredictable inasmuch as the determination of its evolution requires
knowledge with arbitrarily large precision of the initial data. The full analysis of the dynamics
of this model—including the geometry of the associated Riemann surface—is postponed to a
future publication [10].

The purpose of this series of papers together with other related projects [15, 17] is to go
beyond the local analysis performed in the literature relating analytic properties of solutions
in complex time with dynamical properties of the model (Painlevé–Kowalewskaya and its
non-meromorphic extensions) and to perform a full description of the global properties of the
Riemann surface. This full description requires not just finding the type of branch points and
their positions, but specifying how the different sheets of the Riemann surface are attached
together at those branch points.

Whenever possible, such an approach provides very detailed information on the dynamics
that cannot be obtained by the more classical local analyses.
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Appendix A

In this appendix we solve, in the semisymmetrical case, see (2), the nonlinear algebraic
equations (23) that characterize the equilibrium configurations and we thereby compute the
‘eigenvalue’ γ (3), namely we obtain its two expressions (36a) and (36b).

The equations to be solved read (see (23))

α1 = 2g

α1 − α3
+

2f

α1 − α2
, (A.1a)

α2 = 2g

α2 − α3
− 2f

α1 − α2
, (A.1b)

α3 = 2g

α3 − α1
+

2g

α3 − α2
, (A.1c)
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and they of course imply the relation

α1 + α2 + α3 = 0. (A.2)

It is now convenient to set

S = α1 + α2, D = α1 − α2, (A.3a)

entailing

α1 = S + D

2
, α2 = S − D

2
, α3 = −S. (A.3b)

From (the sum of) (A.1a) and (A.1b) we easily get

S(9S2 − D2) = 24gS, (A.4)

and from this we get two types of solutions. The first solution is characterized by S = 0,

implying (see (A.3b) and (A.1a))

α3 = 0, α1 = −α2 = α, α2 = f + 2g, (A.5)

entailing (via (22)) the solution (34) for the equilibrium configuration, as well as (via (24b)
with (2)) the expressions

β3 = f

2(f + 2g)
, (A.6a)

β1 = β2 = 2g

f + 2g
, (A.6b)

hence, via (32), the first expression, (36a), for γ (3).
The second solution is characterized by

9S2 − D2 = 24g. (A.7)

We now subtract (A.1b) from (A.1a) and we thereby easily get

D2 = −8gD2

9S2 − D2
+ 4f, (A.8)

hence, via the preceding relation,

D2 = 3f, S2 = f + 8g

3
. (A.9)

And via (24b) with (2) and (A.3b) this is easily seen to yield

β1 + β2 + β3 = f + 8g

6g
, (A.10)

namely, via (32), the second expression, (36b), of γ (3). Note moreover that, in both cases, one
gets the relation

(α1 − α2)
2 + (α2 − α3)

2 + (α3 − α1)
2 = 6(f + 2g), (A.11)

as can be easily verified from (A.5) as well as from (A.3) with (A.9).

Appendix B

In this appendix we explain how to integrate the ODE (72) in the general case when the
three coupling constants gn are all different, namely when the restriction (2) identifying the
semisymmetrical case does not apply, and we also provide the solution of the ODE (72) in the
two special cases (belonging to the semisymmetrical class characterized by the restriction (2))
the treatment of which had been omitted in section 5, and as well in another special case not
belonging to the semisymmetrical class.
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B.1. Solution of equation (72) in the general case

In this subsection of appendix B we indicate how the ODE (72) can be integrated in the general
case when the three coupling constants gn are all different. It is then convenient to set

V (τ) = tan[θ(τ )], (B.1)

so that this ODE reads

V ′V (V 2 − 3)

(V 2 + 1)(AV 3 + CV 2 + AV + C − 2)
= 1

(τ − τ1)
(B.2)

with

A =
√

3(g1 − g2)

2(g1 + g2 + g3)
, C = 4g1 + 4g2 + g3

2(g1 + g2 + g3)
. (B.3)

To integrate this ODE we set

AV 3 + CV 2 + AV + C − 2 = A(V − V1)(V − V2)(V − V3), (B.4)

so that the three quantities Vn are the three roots of this polynomial of third degree in V. We
then decompose the rational function of V appearing in the left hand side of the ODE (B.2) in
simple fractions,

V (V 2 − 3)

(V 2 + 1)(AV 3 + CV 2 + AV + C − 2)
=

5∑
j=1

μj

V − Vj

, (B.5)

where of course

V4 = i, V5 = −i, (B.6)

and the five quantities μj are easily evaluated in terms of the five roots Vn:

μj = Vj

(−3 + V 2
j

) 5∏
k=1,k �=j

(Vj − Vk)
−1. (B.7)

The integration of the ODE (B.2) is now trivial (using (B.5)), and it yields (using (B.6)) the
final formula

[V (τ) − i]μ4 [V (τ) + i]μ5

3∏
n=1

[V (τ) − Vn]μn = K(τ − τ1), (B.8)

where K is the integration constant.

B.2. Solution of equation (72) in two special subcases of the semisymmetrical case

In this subsection of appendix B we provide the solution of the ODE (72) in the two special
subcases (of the semisymmetrical case) the treatment of which had been omitted in section 5,
and as well in another special case not belonging to the semisymmetrical class. If

g1 + g2 + g3 = 0, (B.9)

ρ is constant (namely τ -independent, ρ(τ) = ρ(0), see (69c)). Moreover, via the restriction
(2) characterizing the semisymmetrical class, we get (see also (14))

f = −2g, μ = 0. (B.10a)
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Then (74) is replaced by

u(τ) exp[−2u2(τ )] = exp

[
3f (τ − τ0)

ρ2(0)

]
. (B.10b)

Let us also note that, if (2) were replaced by

g1 = −g2 = g, g3 = 0, (B.11a)

which is also consistent with (B.9), then (74) with (71) would be replaced by

θ(τ ) + sin[2θ(τ )] = 2
√

3g(τ0 − τ)

ρ2(0)
. (B.11b)

Returning to the semisymmetrical case characterized by validity of the restriction (2) we now
consider the second case whose treatment had been omitted in section 5, namely

f = −8g. (B.12)

Note that in this case μ diverges, see (14). Then (74) is replaced by

u(τ) exp[u2(τ )] = [K(τ − τ1)]
−1/2. (B.13)
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